A numerical and experimental analysis of the flow field in a two-dimensional model of the human carotid artery bifurcation.

نویسندگان

  • C C Rindt
  • F N vd Vosse
  • A A Steenhoven
  • J D Janssen
  • R S Reneman
چکیده

Axial velocities were measured in an enlarged, two-dimensional, rigid model of the carotid artery bifurcation by means of a laser-Doppler anemometer, under both steady and unsteady flow conditions. Also a numerical model was developed, based on the finite element approximation of the Navier-Stokes and continuity equations. From this study it appeared that the numerically predicted velocities agree well with the experimentally obtained values. Besides, the bifurcation hardly influenced the upstream flow in the main branch (common carotid artery), high velocity gradients were observed at the divider walls of the daughter branches (internal and external carotid arteries) and large zones with reversed flow were present near the nondivider walls of these branches. For steady flow the maximal diameter of this zone at the entrance of the internal carotid artery (carotid sinus) was about 25% of the local diameter of this branch. For unsteady flow this zone was absent during the initial phase of flow acceleration and maximal at the end of flow deceleration with a maximal diameter of about 50% of the local diameter of the carotid sinus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lumped Parameter Method to Calculate the Effect of Internal Carotid Artery Occlusion on Anterior Cerebral Artery Pressure Waveform

Background and Objective: Numerical modeling of biological structures would be very helpful tool to analyze hundreds of human body phenomena and also diseases diagnosis. One physiologic phenomenon is blood circulatory system and heart hemodynamic performance that can be simulated by utilizing lumped method. In this study, we can predict hemodynamic behavior of one artery of circulatory system (...

متن کامل

Report of a Variation of the Right Common Carotid Artery

Carotid artery is the most important artery that carries the major part of the blood supply to the head and neck. The branching of the common carotid artery usually occurs at the upper edge of the thyroid cartilage. The placement of carotid sinus has also increased its importance in this area. Considering the clinical importance of knowledge about carotid artery variations, this case is reporte...

متن کامل

Vibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues

The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...

متن کامل

Finite Element Simulation of Blood Flow Through an Artery Bifurcation: A Mathematical Model

A mathematical model for the flow of human blood through an artery bifurcation is studied using finite element analysis (FEA). The FEA has been applied for a two-dimensional steady flow of an in-viscous fluid through different geometries. The flow through a two-dimensional model of a carotid artery bifurcation has been simulated. The velocity profiles through the bifurcation branches were compu...

متن کامل

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 1987